The Genus and the Category of Configuration Spaces
نویسنده
چکیده
In this paper configuration spaces of smooth manifolds are considered. The accent is made on actions of certain groups (mostly p-tori) on this spaces by permuting their points. For such spaces the cohomological index, the genus in the sense of Švarc, and the equivariant Lyusternik-Schnirelmann category are estimated from below, and some corollaries for functions on configuration spaces are deduced.
منابع مشابه
Analysis of the Interaction between the Formal Types of Traditional Houses and Spatial Configurations using Space Syntax Case Study: Traditional Houses of Kashan
Kashan is a city in Iran with a host of traditional houses that date to the Qajar period. Sociocultural and climatic factors have had the greatest impact on their spatial configurations. In this study, focusing on entrances, the spatial configuration of houses in Kashan is analyzed. Houses are first categorized in terms of physical form in four categories: single-courtyard houses with massing ...
متن کاملCategory and subcategories of (L,M)-fuzzy convex spaces
Inthispaper, (L,M)-fuzzy domain finiteness and (L,M)-fuzzy restricted hull spaces are introduced, and several characterizations of the category (L,M)-CS of (L,M)-fuzzy convex spaces are obtained. Then, (L,M)-fuzzy stratified (resp. weakly induced, induced) convex spaces are introduced. It is proved that both categories, the category (L,M)-SCS of (L,M)-fuzzy stratified convex spaces and the cate...
متن کاملTHE CATEGORY OF T-CONVERGENCE SPACES AND ITS CARTESIAN-CLOSEDNESS
In this paper, we define a kind of lattice-valued convergence spaces based on the notion of $top$-filters, namely $top$-convergence spaces, and show the category of $top$-convergence spaces is Cartesian-closed. Further, in the lattice valued context of a complete $MV$-algebra, a close relation between the category of$top$-convergence spaces and that of strong $L$-topological spaces is establish...
متن کاملOn the category of geometric spaces and the category of (geometric) hypergroups
In this paper first we define the morphism between geometric spaces in two different types. We construct two categories of $uu$ and $l$ from geometric spaces then investigate some properties of the two categories, for instance $uu$ is topological. The relation between hypergroups and geometric spaces is studied. By constructing the category $qh$ of $H_{v}$-groups we answer the question...
متن کاملCONVERGENCE APPROACH SPACES AND APPROACH SPACES AS LATTICE-VALUED CONVERGENCE SPACES
We show that the category of convergence approach spaces is a simultaneously reective and coreective subcategory of the category of latticevalued limit spaces. Further we study the preservation of diagonal conditions, which characterize approach spaces. It is shown that the category of preapproach spaces is a simultaneously reective and coreective subcategory of the category of lattice-valued p...
متن کامل